Hydrodynamic limit for an evolutional model of two-dimensional Young diagrams
نویسندگان
چکیده
We construct dynamics of two-dimensional Young diagrams, which are naturally associated with their grandcanonical ensembles, by allowing the creation and annihilation of unit squares located at the boundary of the diagrams. The grandcanonical ensembles, which were introduced by Vershik [17], are uniform measures under conditioning on their size (or equivalently, area). We then show that, as the averaged size of the diagrams diverges, the corresponding height variable converges to a solution of a certain non-linear partial differential equation under a proper hydrodynamic scaling. Furthermore, the stationary solution of the limit equation is identified with the socalled Vershik curve. We discuss both uniform and restricted uniform statistics for the Young diagrams.
منابع مشابه
Calculation of Collision Speed Corresponded to Maximum Penetration Using Hydrodynamic Theory
One of the most valid and efficient models of long rod projectile penetration in homogeneous targets is Tate and Alekseevskii’s (A&t) model. Based on Tate’s model, the present research tries to calculate the optimum speeds to achieve the maximum penetration depth in the homogeneous targets. The proposed collision speed-penetration depth diagrams are developed using Tate’s model. In this way, va...
متن کاملThe Performance of Karafillis-Boyce Yield Function on Determination of Forming Limit Diagrams
Forming Limit Diagrams are useful tools for evaluation of formability in the sheet metals. In this paper the effects of yield criteria on predictions of the right and left-hand sides of forming limit diagrams (FLDs) are investigated. In prediction of FLD, Hosford 1979, “Karafillis-Boyce” (K-B) and BBC2000 anisotropy yield functions have been applied. Whereas the prediction of FLD is based on th...
متن کاملساختار فاز میدانهای پیمانهای شبکهای دو بعدی U(N) با کنش مختلط
We study the phase structure of two dimensional pure lattice gauge theory with a Chern term. The symmetry groups are non-Abelian, finite and disconnected sub-groups of SU(3). Since the action is imaginary it introduces a rich phase structure compared to the originally trivial two dimensional pure gauge theory. The Z3 group is the center of these groups and the result shows that if we use one ...
متن کاملNumerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملFlood hazard zones using 2d hydrodynamic modeling and remote sensing approaches
Increasing frequency and severity of flooding demands identification of flood hazard zones in Kalilangan, Bukidnon in response to the echoing need of better disaster preparedness via enhancing the understanding and awareness of the public on flood characteristics by integrating the use of two-dimensional hydrodynamic modeling and remote sensing. Flood simulation was carried out in a two-dimensi...
متن کامل